Home Sitemap Contact 中文 CAS
 

Search: 

About ISL  |  Research  |  People |  International Cooperation  |  News  |  Education & Training  |  Join Us  |  Societies & Publications  | Papers  |  Resources  |  Links
Research
  • Research Divisions
  • Research Progress
  • Supporting System
  • Achievements
  • Research Programs
  • Location: Home > Research > Research Progress
    Crystal Structure Refinements of Borate Dimorphs Inderite and Kurnakovite using B-11 and Mg-25 Nuclear Magnetic Resonance and DFT Calculations
    Author:
    ArticleSource:
    Update time: 2013-01-18
    Close
    Text Size: A A A
    Print

    Borate minerals composed of [B phi(3)] triangles and/or [B phi(4)] tetrahedra (phi = O or OH) commonly exhibit complex polymerizations to form diverse polyanion groups. High-resolution solid-state magic angle spinning (MAS) B-11 and Mg-25 NMR spectroscopy at moderate to ultrahigh magnetic fields (9.4, 14.1, and 21.1 T) allows for very accurate NMR parameters to be obtained for the borate dimorphs, inderite, and kurnakovite, [MgB3O3(OH)(5)center dot 5H(2)O]. Improved agreement between experimental results and ab initio density functional theory (DFT) calculations using Full Potential Linear Augmented Plane Wave (FP LAPW) with WIEN2k validates the geometry optimization procedures for these minerals and permits refinements of the hydrogen positions relative to previous X-ray diffraction crystal structures. In particular, the optimized structures lead to significant improvements in the positions of the H atoms, suggesting that H atoms have significant effects on the B-11 and Mg-25 NMR parameters in inderite and kurnakovite. This study shows that combined high-resolution NMR spectroscopy and ab initio theoretical modeling provides an alternative method for the refinement of crystal structures, especially H positions.

    Copyright © 2009-2010, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences
    >>>