Growth process of Cu$_2$Al$_6$B$_4$O$_{17}$ whiskers

Chengcai Zhua,b, Xueying Naia, Donghai Zhua,b, Fengqin Guoc, Yongxing Zhaa,b, Wu Lia,*

a Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, PR China
b Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
c Department of Basin Education, Qinghai University, Xining 810016, PR China

Article Info

Article history:
Received 19 May 2012
Received in revised form 2 August 2012
Accepted 5 August 2012
Available online 23 August 2012

Keywords:
Crystal growth
Whisker
Copper aluminum borate

Abstract

The reactions occurred and growth process in the preparation of copper aluminum borate (Cu$_2$Al$_6$B$_4$O$_{17}$) whiskers based on flux method (Al$_2$(SO$_4$)$_3$/CuSO$_4$/H$_3$BO$_3$ as raw materials, K$_2$SO$_4$ as flux) were investigated. The thermogravimetric and differential scanning calorimetry analysis (TG-DSC), inductively coupled plasma atomic emission spectrum analysis (ICP-AES) and X-ray diffraction analysis (XRD) results of reactants mixture quenched at various temperatures and phase diagrams of K$_2$SO$_4$–Al$_2$(SO$_4$)$_3$ system and B$_2$O$_3$–Al$_2$O$_3$ system showed that the reaction process proceeds through three steps: the formation and decomposition of two different kinds of potassium aluminum sulfate (K$_3$Al(SO$_4$)$_3$ and KAl(SO$_4$)$_2$); the formation of aluminum borate (Al$_4$B$_2$O$_9$) and decomposition of copper sulfate (CuSO$_4$) and boric acid (H$_3$BO$_3$); growth and formation of copper aluminum borate (Cu$_2$Al$_6$B$_4$O$_{17}$) whiskers. The scanning electron microscopy (SEM) analysis results indicated that morphology in growth of Cu$_2$Al$_6$B$_4$O$_{17}$ whiskers develops through three stages: nanoparticles, fan-shaped whiskers and agminate-needlelike whiskers.

1. Introduction

One-dimensional nanoscale materials, such as nanotubes, nanowires, and nanobelts, have attracted much attention both because of their high tensile property [1,2] and other potential applications. In recent years, inorganic fibers and whiskers have been used mostly as reinforcements in composites and thermal insulation. Various fibrous materials such as glass, carbon, SiC, aluminum borate (Al$_{18}$B$_4$O$_{33}$), Al$_2$O$_3$, etc., are prepared for such purpose [3]. However, the preparation and application of carbon, SiC and Al$_2$O$_3$ whiskers are limited because of the difficult processing method and high cost. The studies of preparations and applications of metal borate whiskers, such as aluminum borate [4–6] and magnesium borate [7–11], are popular research fields in recent years owing to their excellent MOE (modulus of elasticity), intensity and other properties. Most of the metal borate whiskers used as reinforcement in alloy, ceramics are produced by high-temperature sintering [4,12,13]. However, few of researches are focused on reaction and growth process of the whiskers [14].

Copper aluminum borate (Cu$_2$Al$_6$B$_4$O$_{17}$) whisker is a kind of novel double salt borate whisker. The preparation of Cu$_2$Al$_6$B$_4$O$_{17}$ whisker has been reported by us recently [15], but factors affect the preparation of Cu$_2$Al$_6$B$_4$O$_{17}$ whisker, such as heating temperature, heating time, flux type, reactants ratio, reaction process, growth process and so on, need be studied comprehensively in order to prepare Cu$_2$Al$_6$B$_4$O$_{17}$ whiskers effectively and control morphology of Cu$_2$Al$_6$B$_4$O$_{17}$ whiskers. In this contribution, the reaction process and growth process of Cu$_2$Al$_6$B$_4$O$_{17}$ whiskers were researched by X-ray diffraction (XRD), thermogravimetry (TG), plasma spectrometer, SEM and phase diagrams of the Al$_2$(SO$_4$)$_3$–K$_2$SO$_4$ system and B$_2$O$_3$–Al$_2$O$_3$ system.

2. Experimental

2.1. Synthesis

All the chemical reagents used in this experiment were of analytical grade and pulverized in grinder. Copper sulfate (CuSO$_4$), boric acid (H$_3$BO$_3$), aluminum sulfate octadecahydrate (Al$_2$(SO$_4$)$_3$·18H$_2$O), and potassium sulfate (flux, K$_2$SO$_4$) powders were used as reagents. These reagents were accurately weighed in a proper amount (Cu:Al:B = 2:6:8; total weight 13 g) and the K$_2$SO$_4$ addition was 40 wt%. The mixture was further ground and sieved by 120 mesh screen.

The mixtures were placed in a corundum crucible (50 ml), heated (10 °C/min) to 870 °C and kept for 240 min at 870 °C, then cooled down to room temperature (1 °C/min). During the whole reaction process, samples in different stages were taken out from furnace and quenched with liquid nitrogen (Table 1). As Table 1 shows, samples 1–5 are from heating process, samples 6–8 are...
from constant temperature process, samples 9–11 are from cooling process.

2.2. Characterization

The quenched products were identified by X-ray diffraction (XRD, PANalytical X’Pert PRO diffractometer with Cu Kα radiation, λ=0.15406 nm), thermogravimetric and differential scanning calorimetry (STA449F3 analyzer) and inductively coupled plasma atomic emission spectrometer (ICAP 6500 DUO). The morphology of the whiskers was characterized by scanning electron microscopy (SEM, JSM-5610LV, JEOL).

3. Results and discussion

3.1. Reaction process

Fig. 1 shows the TG-DSC curve of the mixture of raw materials (Cu:Al:B = 2:6:8) and the K$_2$SO$_4$ addition was 40 wt%, which was heated from the room temperature to 1100 °C. It is obvious that two different endothermic peaks (138°C and 866°C) can be seen in the DSC curve, corresponding to the two different weight loss processes in the TG curve, respectively. In the first stage, H$_3$BO$_3$ decomposes and Al$_2$(SO$_4$)$_3$·18H$_2$O dehydrates when the temperature range is 100–400 °C. The weight loss in the temperature range of 100–400 °C is 24.53%, closely corresponding to the theoretical content of water of 25.42%. Few crystal water of CuSO$_4$ dehydrates about 240–320 °C. In the second stage, K$_2$SO$_4$ melts as flux at about 750 °C. CuSO$_4$ and Al$_2$(SO$_4$)$_3$ break down to activated CuO and Al$_2$O$_3$ when the temperature range is 700–950 °C. Two steps exist when CuSO$_4$ is decomposing to CuO and SO$_3$. First, CuSO$_4$ decomposes to CuSO$_4$, CuO and SO$_3$ from 670 to 820 °C. Then CuSO$_4$. CuO decomposes to CuO and SO$_3$ from 850 to 900 °C.

The weight loss in the temperature range of 700–950 °C is 18.71%, closely corresponding to the theoretical content of sulfur trioxide (18.82%). Weight loss of the mixture of the reactants indicates that the temperature ranging from 700 to 950 °C is proper to form Cu$_2$Al$_6$B$_4$O$_{17}$ whisker. However, the TG-DSC results just indicated the weight loss and endo-thermal process of the mixture, but cannot give the exact composition of intermediate products.

X-ray diffraction (XRD) patterns of quenched samples at different temperatures are described in Fig. 2. All samples were treated by hot water to remove impurities (K$_2$SO$_4$). The XRD result in Fig. 2 shows that compound compositions of the intermediate samples are changing along with the calcination temperature and time. Samples 1 and 2 were dissolved absolutely in water. There are four compounds identified by XRD: monopotassium aluminum sulfate (KAl(SO$_4$)$_2$), tripotassium aluminum sulfate (K$_3$Al(SO$_4$)$_3$), aluminum borate (Al$_2$B$_2$O$_7$) and copper aluminum borate (Cu$_2$Al$_6$B$_4$O$_{17}$). Only KAl(SO$_4$)$_2$ and K$_3$Al(SO$_4$)$_3$ were observed before 870 °C (samples 3 and 4). At 870 °C, the diffraction peaks of K$_3$Al(SO$_4$)$_3$ disappeared and that of the KAl(SO$_4$)$_2$ existed (sample 5). The intermediate product (Al$_2$B$_2$O$_7$) and final product (Cu$_2$Al$_6$B$_4$O$_{17}$) formed gradually at constant temperature process at 870 °C (samples 6–8). Fig. 2 (samples 6–8) shows characteristic peaks of products (2θ): 16.7, 26.6, 33.8 and 43.5. The same characteristic peaks for Al$_2$B$_2$O$_7$ and Cu$_2$Al$_6$B$_4$O$_{17}$ mean that the existence of crystal phase transitions from Al$_2$B$_2$O$_7$ to Cu$_2$Al$_6$B$_4$O$_{17}$. The result of XRD indicates that Cu$_2$Al$_6$B$_4$O$_{17}$ is derived from Al$_2$B$_2$O$_7$. Boric acid and copper sulfate were not detected in the samples even before heating, owing to its relatively low concentration and amorphous forms.

XRD results just identify crystal compound, but some intermediate products, such as CuO, B$_2$O$_3$, are still in amorphous forms when quenching from high to room temperature. Fig. 3 shows color change of intermediate products which were treated by hot distilled water to remove water-soluble compounds. In heating...
process, the product color is sky-blue, corresponds to the color of CuSO₄ (sample a). During constant temperature at 870 °C (samples b–d), color changes from gray to erythrine (the color of CuO) and some vitreous products are found (amorphous B₂O₃). In cooling process, color changes from gray to light green (sample f, the color of Cu₂Al₆B₄O₁₇). These indicate that amorphous CuO and B₂O₃ exist in the process. However, copper aluminum borate can hardly resolve in dilute hydrochloric acid. To understand the changing law of amorphous compounds of copper (Cu) and aluminum elements, intermediate products are dissolved by dilute hydrochloric acid (0.5 mol/L) and analyzed by plasma spectrometer (Fig. 4). Both copper and aluminum elements increase gradually in the process of heating and constant temperature, but decrease quickly in cooling process. Figs. 3 and 4 confirmed that amorphous compounds of copper (Cu) and aluminum elements reached at the highest value before cooling. Thus, it is concluded that a mass of copper and aluminum elements are consumed in cooling process to supply the growth of whiskers. Moreover, the results predict that appropriate cooling rate is better for reagents and yield of whiskers.

Based on the discussion and results in the XRD and TG–DSC, the reaction process when raw materials were heated can be confirmed by the phase diagrams of Al₂(SO₄)₃–K₂SO₄ [17] and

Fig. 3. Appearance of intermediate product at different temperatures and times: in heating process (a) 840 °C; in constant temperature process at 870 °C for (b) 30 min, (c) 120 min, (d) 240 min; in cooling process (e) 600 °C, (f) 500 °C. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 4. Amorphous change of Cu and Al in intermediate product. Sample sequence is corresponding to Table 1.
B₂O₃–Al₂O₃ [18]. As shown in Fig. 5, the phase in which the aluminum salts formed and decomposed are different for mixtures with different K₂SO₄/Al₂(SO₄)₃ ratios. The change of phase point of mixture (molar ratio of Cu:Al:B as 2:6:8, the K₂SO₄ addition was 40 wt%) at different temperatures is plotted by dotted line on the Al₂(SO₄)₃–K₂SO₄ phase diagram. Four different sulfates exist in heating process: K₂SO₄ (below 620 °C), K₃Al(SO₄)₃ (527–680 °C), Al₃(SO₄)₂ (780–827 °C), and Ca₄Al₂O₉ (above 870 °C), corresponding to the results of XRD (Fig. 2). At 870 °C, Al₂(SO₄)₃/K₂SO₄ ratio is decreased slowly because of the formation of Al₄B₂O₉ and Cu₂Al₆B₄O₁₇. And the phase point moves into liquid–solid phase region of K₂SO₄. According to the result of plasma spectrometer (Fig. 4), the formation of Al₄B₂O₉ and Cu₂Al₆B₄O₁₇ still exists in cooling process. These indicate that enough thermostatic time and cooling rate are beneficial to conversion of aluminum element.

In order to fully understand the interactions occurring between Al₂O₃ and B₂O₃ it is necessary to study the relevant phase diagram first. From the phase diagram of the Al₂O₃–B₂O₃ system [18] in Fig. 6, it is clear that B₂O₃ reacts with Al₂O₃ to form Al₄B₂O₉ and/or Al₁₈B₄O₃₃ depending on the composition and temperature. If the ratio of Al₂O₃/B₂O₃ is less than 67% and temperature is between 500 °C and 1150 °C, the most favorable borate phase would be Al₄B₂O₉ which then transforms into Al₁₈B₄O₃₃ at temperatures above 1150 °C. The phase diagram shows that phase point (molar ratio of Al:B as 3:4) is in liquid–solid phase region of Al₄B₂O₉ at 870 °C in this work, consistent with the result of XRD (Fig. 2, samples 6–8).

The TG and XRD results of reactants quenched at various temperatures and phase diagrams of the Al₂(SO₄)₃–K₂SO₄ system [17] in Fig. 5, it is clear that B₂O₃ reacts with Al₂O₃ to form Al₄B₂O₉ and/or Al₁₈B₄O₃₃ depending on the composition and temperature. If the ratio of Al₂O₃/B₂O₃ is less than 67% and temperature is between 500 °C and 1150 °C, the most favorable borate phase would be Al₄B₂O₉ which then transforms into Al₁₈B₄O₃₃ at temperatures above 1150 °C. The phase diagram shows that phase point (molar ratio of Al:B as 3:4) is in liquid–solid phase region of Al₄B₂O₉ at 870 °C in this work, consistent with the result of XRD (Fig. 2, samples 6–8).

3.2. Growth process of whisker

The quenched products were immersed and washed by hot water and dilute HCl solvent, respectively, to remove residual boric acid, potassium sulfate and other by-products. The effects of the temperature on the composition and morphology of the intermediate products at different reaction stages are shown in Fig. 7. As shown in Fig. 7, the morphology of products is various in different stages. Only irregular nanoparticles are formed below 840 °C. Particles mixed with fewer fan-shaped whiskers appear when the temperature just reached 870 °C. Fewer particles and tremendous fan-shaped whiskers appeared at 870 °C for 30 min. Accompany with homothermal process, the whiskers grow from fan-shaped to agminate-needlelike. The diameters and lengths of whiskers will no longer change when cooled down below 700 °C. The morphological changes of intermediate products indicate that the growth of whiskers develops through three stages: nanoparticles, fan-shaped whiskers and agminate-needlelike whiskers.

Combined with the above analysis of TG-DSC, XRD, SEM and phase diagrams of the Al₂(SO₄)₃–K₂SO₄ system and B₂O₃–Al₂O₃ system, reaction mechanism of Cu₂Al₆B₄O₁₇ whiskers could be proposed as follows (Eqs. (1)–(8)):

\[
\begin{align*}
2\text{CuSO}_4 & \rightarrow \text{Cu}_2\text{O} + \text{SO}_3 \quad (1) \\
\text{Cu}_2\text{O} + \text{CuO} & \rightarrow 2\text{CuO} + \text{SO}_3 \quad (2) \\
2\text{H}_3\text{BO}_3 & \rightarrow \text{B}_2\text{O}_3 + 3\text{H}_2\text{O} \quad (3) \\
3\text{K}_2\text{SO}_4 + \text{Al}_2\text{(SO}_4)_3 & \rightarrow 2\text{K}_3\text{Al}(_3\text{SO}_4)_2 \quad (4) \\
\text{K}_3\text{Al}(_3\text{SO}_4)_2 & \rightarrow \text{KAl}(_3\text{SO}_4)_2 + \text{K}_2\text{SO}_4 \quad (5) \\
2\text{KAl}(_3\text{SO}_4)_2 & \rightarrow \text{Al}_3\text{O}_3 + \text{K}_2\text{SO}_4 + 3\text{SO}_3 \quad (6) \\
2\text{Al}_3\text{O}_3 + \text{B}_2\text{O}_3 & \rightarrow \text{Al}_4\text{B}_2\text{O}_9 \quad (7) \\
3\text{Al}_2\text{B}_2\text{O}_9 + 4\text{CuO} + \text{B}_2\text{O}_3 & \rightarrow 2\text{Cu}_2\text{Al}_6\text{B}_4\text{O}_{17} \quad (8)
\end{align*}
\]

These equations show that potassium sulfate flux is not only a reaction flux but also a catalyst participating in the reactions. Compared with the frequently used potassium chloride, lower reaction temperature and higher reactivity of alumina are obtained while we use potassium sulfate as flux.
system, as shown in Fig. 8, the possible growth mechanism of whiskers might be as follows: the crystal phase transitions from aluminium borate (Al$_4$B$_2$O$_9$) to copper aluminum borate (Cu$_2$Al$_6$B$_4$O$_{17}$) indicate that fan-shaped whiskers are growing from Al$_4$B$_2$O$_9$ particle. Copper aluminum borate (Cu$_2$Al$_6$B$_4$O$_{17}$) nucleates and grows from particle because of the anisotropy and active growing point of Al$_4$B$_2$O$_9$. During the whiskers' growth process, Al$_4$B$_2$O$_9$ particles are consumed gradually as reaction material until the generation of apinate-needlelike whiskers. Copper oxide (CuO) and boron oxide (B$_2$O$_3$) are supplied constantly for the formation of Cu$_2$Al$_6$B$_4$O$_{17}$.

4. Conclusions

In conclusions, the reaction process and possible growth mechanism of Cu$_2$Al$_6$B$_4$O$_{17}$ whiskers were proposed by studying intermediate products in different stages. The results of TG-DSC curve, XRD patterns and plasma spectrometer combined with analysis of phase diagrams of the Al$_2$(SO$_4$)$_3$–K$_2$SO$_4$ system and B$_2$O$_3$–Al$_2$O$_3$ system proved that reaction process proceeds through three steps: the formation and decomposition of potassium aluminium sulfate (K$_3$Al(SO$_4$)$_3$ and KAl(SO$_4$)$_2$); the formation of aluminum borate (Al$_4$B$_2$O$_9$) and decomposition of copper
sulfate (CuSO₄) and boric acid (H₃BO₃); the growth and formation of copper aluminum borate (Cu₂Al₆B₄O₁₇) whiskers. From SEM observation, we concluded that the morphology in growth of Cu₂Al₆B₄O₁₇ whiskers develops through three stages: nanoparticles, fan-shaped whiskers and agminate-needlelike whiskers.

Acknowledgments

This work was supported by the Qinghai Technology Committee Industrial Public Relation Project of China, Project no. 2010-G-208.

References